Significance of Non-Elliptic Regions in Balanced Flows of the Tropical Atmosphere

1982 ◽  
Vol 110 (12) ◽  
pp. 1956-1967 ◽  
Author(s):  
Akira Kasahara
Author(s):  
Juan A. Jaén ◽  
Kevin Guzmán ◽  
Josefina Iglesias ◽  
Griselda Caballero Manrique

Author(s):  
M. I. Daskovsky ◽  
◽  
E. A. Shein ◽  
D. V. Sevastyanov ◽  
M. S. Doriomedov ◽  
...  
Keyword(s):  

2018 ◽  
Vol 75 (10) ◽  
pp. 3313-3330 ◽  
Author(s):  
Hauke Schulz ◽  
Bjorn Stevens

Measurements from the Barbados Cloud Observatory are analyzed to identify the processes influencing the distribution of moist static energy and the large-scale organization of tropical convection. Five years of water vapor and cloud profiles from a Raman lidar and cloud radar are composed to construct the structure of the observed atmosphere in moisture space. The large-scale structure of the atmosphere is similar to that now familiar from idealized studies of convective self-aggregation, with shallow clouds prevailing over a moist marine layer in regions of low-rank humidity, and deep convection in a nearly saturated atmosphere in regions of high-rank humidity. With supplementary reanalysis datasets the overall circulation pattern is reconstructed in moisture space, and shows evidence of a substantial lower-tropospheric component to the circulation. This shallow component of the circulation helps support the differentiation between the moist and dry columns, similar to what is found in simulations of convective self-aggregation. Radiative calculations show that clear-sky radiative differences can explain a substantial part of this circulation, with further contributions expected from cloud radiative effects. The shallow component appears to be important for maintaining the low gross moist stability of the convecting column. A positive feedback between a shallow circulation driven by differential radiative cooling and the low-level moisture gradients that help support it is hypothesized to play an important role in conditioning the atmosphere for deep convection. The analysis suggests that the radiatively driven shallow circulations identified by modeling studies as contributing to the self-aggregation of convection in radiative–convective equilibrium similarly play a role in shaping the intertropical convergence zone and, hence, the large-scale structure of the tropical atmosphere.


2007 ◽  
Vol 22 (3) ◽  
pp. 329-337
Author(s):  
Andrei Bourchtein ◽  
Ludmila Bourchtein

To eliminate the fast gravitational waves of great amplitude, which are not observed in the real atmosphere, the initial fields for numerical schemes of atmosphere forecasting and modeling systems are usually adjusted dynamically by applying balance relations. In this study we consider different forms of the balance equations and for each of them we detect the nonelliptic regions in the gridded atmosphere data of the Southern Hemisphere. The performed analysis reveals the geographical, vertical and zonally averaged distributions of nonelliptic regions with the most concentration in the tropical zone. The area of these regions is essentially smaller and less intensive for more complete and physically justified balance relations. The obtained results confirm the Kasaharas assumption that ellipticity conditions are violated in the actual atmospheric fields essentially due to approximations made under deriving the balance equations.


Author(s):  
Bhimsen Shivamoggi ◽  
G Heijst ◽  
Leon Kamp

Abstract The Okubo [5]-Weiss [6] criterion has been extensively used as a diagnostic tool to divide a two-dimensional (2D) hydrodynamical flow field into hyperbolic and elliptic regions and to serve as a useful qualitative guide to the complex quantitative criteria. The Okubo-Weiss criterion is frequently validated on empirical grounds by the results ensuing its application. So, we will explore topological implications into the Okubo-Weiss criterion and show the Okubo-Weiss parameter is, to within a positive multiplicative factor, the negative of the Gaussian curvature of the underlying vorticity manifold. The Okubo-Weiss criterion is reformulated in polar coordinates, and is validated via several examples including the Lamb- Oseen vortex, and the Burgers vortex. These developments are then extended to 2D quasi- geostrophic (QG) flows. The Okubo-Weiss parameter is shown to remain robust under the -plane approximation to the Coriolis parameter. The Okubo-Weiss criterion is shown to be able to separate the 2D flow-field into coherent elliptic structures and hyperbolic flow configurations very well via numerical simulations of quasi-stationary vortices in QG flows. An Okubo-Weiss type criterion is formulated for 3D axisymmetric flows, and is validated via application to the round Landau-Squire Laminar jet flow.


2021 ◽  
Vol 54 (1) ◽  
Author(s):  
Caroline Muller ◽  
Da Yang ◽  
George Craig ◽  
Timothy Cronin ◽  
Benjamin Fildier ◽  
...  

Idealized simulations of the tropical atmosphere have predicted that clouds can spontaneously clump together in space, despite perfectly homogeneous settings. This phenomenon has been called self-aggregation, and it results in a state where a moist cloudy region with intense deep convective storms is surrounded by extremely dry subsiding air devoid of deep clouds. We review here the main findings from theoretical work and idealized models of this phenomenon, highlighting the physical processes believed to play a key role in convective self-aggregation. We also review the growing literature on the importance and implications of this phenomenon for the tropical atmosphere, notably, for the hydrological cycle and for precipitation extremes, in our current and in a warming climate. Expected final online publication date for the Annual Review of Fluid Mechanics, Volume 54 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Sign in / Sign up

Export Citation Format

Share Document